delika Python Client
Preview: This feature in preview state and might change or have limited support.
Requirements
Python 3.7+
Installation
# delika client only
pip install --extra-index-url=https://docs.delika.io/python/ delika
# delika client with Pandas and other dependent packages
pip install --extra-index-url=https://docs.delika.io/python/ delika[DataFrame]If you have already installed delika or other dependencies (e.g. Pandas), you may want to upgrade them with --upgrade and --upgrade-strategy options.
pip install --upgrade --upgrade-strategy=eager --extra-index-url=https://docs.delika.io/python/ delika[DataFrame]Low-Level API
Low-level API is an API client generated by OpenAPI generator. We do not recommend for users to use low-level API. Use high-level API below instead.
High-Level API
High-level API is a wrapper for the API client generated by OpenAPI generator.
References
Modules
- delika: high-level API
- delika.api_v1: low-level API
- delika.pandas: work with Pandas data frame
Functions
delika.new_token(host, open_browser): Get JWT.host: API host (default: https://api.delika.io/v1).open_browser: Boolean value that indicates your program opens your browser at the point.
delika.read_token(key, path): Read JWT from local file.key: Key.path: Local file path (default: $HOME/.delika/token.json).
delika.new_client(token, host): Create a new instance of ApiClient.token: JWT.host: API host (default: https://api.delika.io/v1).
delika.load_client(key, path, host): Create a new instance of ApiClient.key: Key.path: Local file path (default: $HOME/.delika/token.json).host: API host (default: https://api.delika.io/v1).
delika.pandas.read_delika_data(account_name, dataset_name, data_name, client): Read data into a data frame.account_name: Account name.dataset_name: Dataset name.data_name: Data name.client: ApiClient instance.
async delika.pandas.read_delika_sql(sql, client, query_timeout_sec): Run SQL and read the results into a data frame.sql: SQL.client: ApiClient instance.query_timeout_sec: Timeout in second (default: 30)
delika.pandas.read_delika_query_results(query_id, client): Read the query results into a data frame.query_id: Query ID.client: ApiClient instance.
- deprecated
delika.pandas.to_delika(data, account_name, dataset_name, data_name, client): Upload data frame. This function is deprecated. Useto_delika_fileinstead.data: Data frame.account_name: Account name.dataset_name: Dataset name.data_name: Data name.client: ApiClient instance.
delika.pandas.to_delika_file(data, account_name, dataset_name, data_name, client): Upload data frame into data file dataset.data: Data frame.account_name: Account name.dataset_name: Dataset name.data_name: Data name.client: ApiClient instance.
delika.pandas.to_delika_collection(data, partition_column_name, account_name, dataset_name, data_name, client): Upload data frame into data collection dataset.data: Data frame.partition_column_name: Partition column name in the data frame. The value type of specified column must be string.account_name: Account name.dataset_name: Dataset name.data_name: Data name (e.g. iffoo.csvis given, uploaded file will be like2020__foo.csvaccording to partition values).client: ApiClient instance.
Types
delika.Jwt: Data class to hold JWTtoken_type: Bearer.access_token: Access token.access_token_expires_on: Expiration time of access token.refresh_token: Refresh token.refresh_token_exipres_on: Expiration time of refresh token.refresh(client): Refresh the current JWT.client: OpenAPI client. It is convenient to use delika.ApiClient.refresh_jwt() instead of calling this method directly.
save(key, path): Save the current token in the specified path.key: Token name.path: Token file path (default: ~/.delika/token.json for Linux or macOS, %APPDATA%\delika\token.json for Windows)
delika.ApiClient: A wrapper class for ApiClient generated by OpenAPI generatortoken: JWT which is hold by the client.host: The API host.refresh_token(): Refresh the client's JWT.get_user_datasets(): Get your datasets.get_account_datasets(account_name): Get the list of account's datasets.account_name: Account name.
get_dataset_data(account_name, dataset_name): Get the list of dataset's data.account_name: Account name.dataset_name: Dataset name.
upload_data(account_name, dataset_name, data_name, schema, source, force_generate_table_definition): Download data.account_name: Account name.dataset_name: Dataset name.data_name: Data name.schema: Data schema.source: Local file path to upload.force_generate_table_definition: Indicates whether TableDefinition in data schema is generated automatically and replaces if TableDefinition is defined in the data schema.
download_data(account_name, dataset_name, data_name, destination): Download data.account_name: Account name.dataset_name: Dataset name.data_name: Data name.destination: Local file path or buffer to save.
start_query(sql): Post the SQL.sql: SQL.
get_query_status(query_id): Get the query status.query_id: Query ID.
download_query_results(query_id, destination): Download the query results.query_id: Query ID.destination: Local file path or buffer to save.
Data Types
| delika | Python (Pandas) |
|---|---|
| boolean | pandas.BooleanDtype |
| number | numpy.float64 |
| factor | pandas.CategoricalDtype |
| datetime | pandas.DatetimeTZDtype |
| text | pandas.StringDtype |
Examples
Basic Use
import delika
# get JWT (launch a browser)
token = delika.new_token()
# save JWT to the default path with the default key ('Default').
token.save()
# create a new API client.
client = delika.new_client(token)
# you can create a new API client from saved JWT.
# client = delika.load_client()
# work with the API client.
my_datasets = client.get_user_datasets()
print(my_datasets)
# when your access_token is expired, you can refresh your JWT.
client.refresh_token()
# you need to save explicitly.
client.token.save()Pandas
import delika.pandas
# read data as a data frame.
df1 = delika.pandas.read_delika_data(account_name, dataset_name, data_name, client)
# read SQL results as a data frame.
import asyncio
df2 = asyncio.run(delika.pandas.read_delika_sql(sql, client))
# upload from your data frame into data file
import pandas
df3 = pandas.DataFrame(...)
# the following two expressions are same
delika.pandas.to_delika_file(df3, account_name, dataset_name, data_name, client)
df3.delika.to_delika_file(account_name, dataset_name, data_name, client)
# upload from your data frame into data collection
df4 = pandas.DataFrame({'year':['2021',...], ...})
delika.pandas.to_delika_collection(df4, 'year', account_name, dataset_name, data_name, client)
df4.delika.to_delika_collection('year', account_name, dataset_name, data_name, client)Version History
- 0.0a4
- Support uploading files into data collection dataset
- Deprecate
to_delikafunction
- 0.0a3
- Add
read_delika_query_resultsfunction
- Add
- 0.0a2
- Rename functions
- Add upload functions
- 0.0a1
- Initial release